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Abstract— Programming robotic assembly tasks usually re-
quires delicate force tuning. In contrast, human may accomplish
assembly tasks with much less time and fewer trials. It will be
a great benefit if robots can learn the human inherent skill
of force control and apply it autonomously. Recent works on
Learning from Demonstration (LfD) have shown the possibility
to teach robots by human demonstration. The basic idea is
to collect the force and corrective velocity that human applies
during assembly, and then use them to regress a proper gain
for the robot admittance controller. However, many of the
LfD methods are tested on collaborative robots with compliant
joints and relatively large assembly clearance. For industrial
robots, the non-backdrivable mechanism and strict tolerance
requirement make the assembly tasks more challenging. This
paper modifies the original LfD to be suitable for industrial
robots. A new demonstration tool is designed to acquire the
human demonstration data. The force control gains are learned
by Gaussian Mixture Regression (GMR) and the closed-loop
stability is analysed. A series of peg-hole-insertion experiments
with H7h7 tolerance on a FANUC manipulator validate the
performance of the proposed learning method.

I. INTRODUCTION

Autonomous assembly is a typical task in industrial pro-
duction but not easy for robots to execute. Because of the
high rigidity and small clearance of the mating parts, even
a slight error during assembly will produce a large contact
wrench, consequently, failure of operation [1].

In the past years, many active force control methods have
been developed for robot assembly. The general idea is to
build a compliant controller, which modifies the nominal
trajectory on-line to minimize the contact wrench during
manipulation [2]–[5]. By convention, force control is to
regulate both contact force and torque, where force refers
to the three dimensional vector F = [Fx,Fy,Fz]

T , and torque
refers to the three dimensional vector T = [Tx,Ty,Tz]

T . In the
following paper, the wrench is utilized to denote both force
and torque for description simplicity.

Fig. 1 shows the block diagram of admittance control,
which is a common structure for robot force servo [6]. The
wrench error we generates a set-point for an inner velocity-
control loop. The system approaches to steady state when
the wrench is regulated to the desired value. Note that when
the robot contacts the environment, the closed-loop system
dynamics will change accordingly since the environment
dynamics are involved. In practice, engineers have to tune
the admittance gains on a case by case basis, in order
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Fig. 1. Force servo with inner velocity control loop

to adapt to the different stiffness, damping or clearance
of the environment and to achieve a good force control
performance.

In contrast to the non-trivial admittance tuning, human
beings could accomplish the assembly task manually with
much less time and fewer trials. If regarding this inherent
assembly skill inside the human as a controller, then its gains
should already be well tuned through our daily operation
and experience. Thus the idea to teach robot assembly from
human demonstration [7]–[10]. Instead of traditional tuning
method, the admittance gains are learned directly from the
human, and then applied on the robot force controller.

There are already some preliminary works on learning
assembly from human demonstration. In [7], the human
assembly skill was modelled as a state-varying admittance
and then utilized Gaussian Mixture Regression to predict
the corrective velocity from wrench measurement. In [8], a
neural network control policy was trained by trial and error
and the robot learned to assemble a toy plane with unknown
environment dynamics. In [9], the instructor demonstrated
the manipulation task in a haptic rendered virtual environ-
ment using a haptic device and then used Locally Weighted
Projection Regression to model the human corrective trajec-
tory under jamming states.

These methods have shown effective on collaborative
robots such as Baxter [11] and PR2 [12], with the as-
sembly tolerance H5h10 or larger. However, few of them
are tested on industrial robots. Unlike collaborative robots,
the traditional industrial robot is highly rigid because of
large gear reduction ratio on the drivetrain. Basically there
is no compliance on the mechanism to assist assembly.
Besides, the clearance requirement for industrial assembly
is more strict. To deal with these problems, we modified
our work at [7] to apply learning from demonstration on
industrial robots. This paper is organized as follows: Section
I introduces the background of autonomous assembly by
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Fig. 2. Cross section of peg-hole-insertion. The force/torque feedback
signal generates a corresponding translational/rotational velocity command
to the robot.

force control, and the motivation of learning from human
demonstration. Section II takes the peg-hole-insertion as an
example to analyse the assembly task. A demonstration tool
is designed to acquire human demonstration data and the data
processing procedures are introduced. Section III introduces
a framework of learning the state-varying admittance from
human by Gaussian Mixture Regression (GMR). The phys-
ical interpretation of GMR is discussed and the closed-loop
stability is analysed. A series of experiments are performed
on a H7h7 peg-hole testbed and the experimental results
are provided in Section IV. Section V is conclusion and
discussion.

II. DATA ACQUISITION AND PROCESSING

Peg-hole-insertion, i.e., inserting a round peg into a round
hole, is one of the most common assembly tasks in industry.
Peg-hole-insertion will be utilized as an example in this paper
to introduce how to teach robot assembly skill by human
demonstration.

Fig. 2 shows the robot assembly procedure in the cross
section. The F/T sensor on the robot end-effector detects
the force and torque applied on the peg. By designing a
proper control law, the force/torque feedback will generate
a corresponding translational/rotational velocity command
on the robot end-effector, so as to push the peg away
from collision. Similarly, human brain perceives the hand’s
tactile feedback and then decides which direction to move in
order to compliantly assemble the work pieces. However, the
human assembly skill is much more sophisticated. Human
would apply different admittance according to the different
material and tolerance of the work piece, or even according
to the different phases during insertion. The core idea of this
research is to learn the state-varying admittance by human
demonstration data during assembly, and then apply this
admittance block to robot force controller.

A. Data Acquisition

The first step of learning from human is to acquire the
human demonstration data. For example, how to measure
the contact wrench that human feels during assembly? And
how to detect the corrective velocity that human applied
on the peg? An intuitive idea is to utilize the lead through
teaching mode (Fig. 3(a)): human operator grasps the robot
end-effector and guides the manipulator to insert the peg into

(a) Lead Through Teaching (b) Human Demonstration Device

Fig. 3. Two different methods to acquire human demonstration data.(a)
By lead through teaching. Contact wrench is detected by the end-effector
F/T sensor, and velocity is calculated by robot forward kinematics; (b) By
human demonstration device. Contact wrench is measured by the F/T sensor
embedded in HDD, and velocity is measured by the motion capture system.

the hole. During the assembly, the contact force is recorded
by the F/T sensor on the end-effector, and the Cartesian
space corrective velocity is calculated by the robot forward
kinematics. In practice, however, we find that industrial
robot’s lead though teaching fails in this kind of contact
tasks. Since there is usually only one F/T sensor on the
industrial robot, it cannot distinguish the wrench applied
by the human from that applied by the hole. Therefore the
human operator loses control of the robot when the peg starts
to contact the hole, and the following insertion procedure
cannot be demonstrated.

To deal with this problem, the idea of human demonstra-
tion device (HDD [13]) is proposed as shown in Fig. 3(b).
Instead of using robot sensors to collect data, an independent
tool is designed to collect the required wrench and velocity
information. The HDD consists of three major components:
from the bottom to the top, a round peg, a F/T sensor and
a handle bar. There are also several vision markers attached
on for velocity tracking. During human demonstration, hu-
man operator grasps the handle bar and performs peg-hole-
insertion several trials. The contact wrench and corrective
velocity are recorded by the F/T sensor and the motion
capture system simultaneously. Section IV will introduce the
design of HDD in details.

Compared to lead through teaching, the human operator
grasps HDD instead of the robot arm to perform the assembly
tasks, which is more natural and intuitive. Second, the robot
and human are separated during data acquisition, which
ensures the safety of the human operator.

B. Data Processing

As shown in Fig. 4, a Cartesian coordinate is built up
with the origin OS at the center of the F/T sensor. OP
is the Tool Center Point (TCP) at the end of peg. The
peg’s velocity is described by ẋ = [vx,vy,vz,ωx,ωy,ωz]

T ∈
R6. The wrench data collected by F/T sensor is wS =
[FS

x ,F
S
y ,F

S
z ,M

S
x ,M

S
y ,M

S
z ]

T ∈ R6.
The collected data set ẋ and wS cannot be directly utilized

to train the state-varying admittance. Several data processing
steps are required. During peg-hole-insertion, the contact
wrench applies at the peg end OP, but is measured at F/T
sensor origin OS. The measurement value is influenced by
the peg length between OS and OP. A general assembly skill
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Fig. 4. Wrench applied on the Tool Center Point OP, while the measure-
ment value is relative to F/T sensor origin OS.

should not be influenced by this specific length. Therefore wS

should be transformed with respect to OP so as to eliminate
the influence of peg length. Denote the wrench at OP as
wTCP = [Fx,Fy,Fz,Mx,My,Mz]

T ∈R6. It can be calculated by
linear transformation

wTCP =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −OSOP 0 1 0 0

+OSOP 0 0 0 1 0
0 0 0 0 0 1

 ·w
S (1)

Besides the convention transformation, if the human oper-
ator demonstrates insertions multiple times but with varying
speeds, this velocity inconsistency might influence the qual-
ity of admittance training. To deal with this problem, the
Dynamic Time Warping [14] from speech recognition area
can be utilized to synchronize multiple data sets. More details
of velocity synchronization can be found in [7].

III. LEARN STATE-VARYING ADMITTANCE BY
GAUSSIAN MIXTURE REGRESSION

For a force controller, the admittance gain determines
how large the corrective velocity should be according to
the measured contact wrench. From Section II, the wrench
and velocity information are recorded simultaneously from
human demonstration. In this section, we will train an
admittance block such that given the same wrench input,
it generates a similar velocity output as human does. This
is a typical regression problem in statistics. There are many
predictors developed for regression, and a question is which
would be the most suitable method for our problem?

We set up three criteria to select the proper predictor:
(1) Stability. Since this state-varying admittance block is

embedded in the feedback control loop, it could influ-
ence the stability of the whole system. The stability con-
ditions of the predictor should be explicitly formulated,
so that the system stability can be analysed.

(2) Efficiency. The computation power of industrial robot
controller is limited due to cost concerns. It is preferred
that the predictor has a closed-form expression so that
it could be calculated efficiently on-line.

+

+
=

Fig. 5. Estimate data distribution by Gaussian. For the ease of visualization,
both velocity and wrench are one dimensional here. The distribution density
of the velocity and wrench data collected from human demonstration is
shown in the left. This density map is then fitted by superposition of several
weighted Gaussian with different means and covariance.

(3) Interpretation. There are many prediction methods be-
having like black boxes. They could generate proper
output by learning from training data, but do not have
good explanations on their internal dynamics. It is
preferred that the predictor in this work has a physical
interpretation which explains why it can serve as a state-
varying admittance.

Many common predictors, such as neural networks, logistic
regression, K-nearest neighbours cannot meet all the above
criteria. To meet the three criteria, the Gaussian Mixture
Regression (GMR [15]) is introduced in this work to build
the state-varying admittance block. In the rest of this section,
we will show that GMR has explicit stability conditions,
good efficiency and reasonable physical interpretations re-
spectively.

A. Introduction to GMR

The basic idea of GMR is to fit the human demonstration
data (sensed wrench w and corrective velocity ẋc) into a
joint probability distribution p(w, ẋc), then use its conditional
probability p(ẋc|w) to retrieve the output ẋc given the input
w.

As shown in Fig. 5, the first step of GMR is to fit the joint
probability distribution p(w, ẋc) by mixture of N Gaussian
components, each with mean µi, covariance Σi and weight
αi, with ∑

N
i=1 α i = 1:

p(w, ẋc) =
N

∑
i=1

α
i pi(w, ẋc)

=
N

∑
i=1

α
iN (

[
w
ẋc

]
|
[

µ i
w

µ i
ẋc

]
,

[
Σi

w Σi
wẋc

Σi
ẋcw Σi

ẋc

]
) (2)

Since each component pi(w, ẋc) is Gaussian, its conditional
probability distribution pi(ẋc|w) is still Gaussian:

pi(ẋc|w) = N (ẋc|µ i
ẋc|w,Σ

i
ẋc|w) (3)

The overall conditional probability p(ẋc|w) can be con-
structed as the sum of each pi(ẋc|w), with a weight which
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indicates the probability of w belonging to each Gaussian
component

p(ẋc|w) =
N

∑
i=1

α iN (w|µ i
w,Σ

i
w)

∑
N
j=1 α jN (w|µ j

w,Σ
j
w)

pi(ẋc|w) (4)

To transfer the stochastic probability into a deterministic
controller, the admittance block is designed such that given
an input wrench w, it will generate an output corrective
velocity ẋ∗c that maximizes p(ẋc|w). ẋ∗c could be calculated
from (5) deterministically in real time.

ẋ∗c = argmax
ẋc

p(ẋc|w)

=
N

∑
i=1

α iN (w|µ i
w,Σ

i
w)

∑
N
j=1 α jN (w|µ j

w,Σ
j
w)

µ
i
ẋc|w

=
N

∑
i=1

α iN (w|µ i
w,Σ

i
w)

∑
N
j=1 α jN (w|µ j

w,Σ
j
w)

[
µ

i
ẋc +Σ

i
ẋcw(Σ

i
w)
−1(w−µ

i
w)
]

(5)

The Gaussian parameters (µ i,Σi,α i) in GMR can be
estimated iteratively by E-M algorithm from the human
demonstration data (w, ẋc). More details of GMR parameter
calculation can be found in [16].

B. Interpreting GMR with mechanics point of view

The statistic form of GMR as (5) does not provide insight
to the dynamic feature of the admittance system [17]. In this
section, we rewrite (5) to formulate it like a dynamic system.
To simplify the notation, we define:

hi(w) =
α iN (w|µ i

w,Σ
i
w)

∑
N
j=1 α jN (w|µ j

w,Σ
j
w)

(6)

Ai = Σ
i
ẋcw(Σ

i
w)
−1 (7)

where hi(w) ∈ [0,1] is a scalar function of w and Ai is a
constant square matrix. Substituting (6) and (7) into (5), we
have

ẋc =
N

∑
i=1

hi(w)
[
µ

i
ẋc +Ai(w−µ

i
w)
]

(8)

Equation (8) has the following physical interpretation: the
state-varying admittance block consists of N linear dampers,
where each damper has a unique admittance Ai and a preload
velocity µ i

ẋc
−Aiµ i

w. Equation (7) reveals the relation between
the admittance Ai and the covariance of Gaussian distribu-
tion. The nonlinear weight hi(w) denotes the contribution
of each damper to the whole block. If combining multiple
dampers into a single nonlinear one, then we can define

Ā =
N

∑
i=1

hi(w)Ai (9)

µ̄ẋ =
N

∑
i=1

hi(w)(µ i
ẋc −Ai

µ
i
w) (10)

and ẋc can be described as

ẋc = Āw+ µ̄ẋ (11)

⋯ ⋯ ⋯ + +
+

GMR Admittance Block

Fig. 6. Interpretation of GMR in mechanics point of view. The admittance
block formulated by GMR consist of N linear dampers with admittance
Ai respectively. Each damper has a nonlinear weight hi(w) denoting its
contribution to the whole block. The output of the admittance block is
generatd by the summation of the N dampers’ outputs as well as an general
preload velocity µ̄ẋ.

where Ā is the general admittance of the block, and µ̄ẋ is
the general preload corrective velocity.

To conclude, the structure of GMR has an inherent sim-
ilarity with physical admittance systems. It can be inter-
preted as a combination of multiple dampers with different
admittances and nonlinear weights (see Fig. 6). This explicit
structure also provides the convenience to analyse the closed-
loop stability of the control system.

C. Stability condition of the closed-loop system

For industrial applications, it is a critical issue to guarantee
the system stability. This subsection will analyse the stability
conditions of the closed loop system with GMR based on
Lyapunov theorem [18].

Theorem 1. Consider a closed loop robot control system
(Fig. 7) consisting of a robot, an admittance control block
ẋc = ∑

N
i=1 hi(we)

[
µ i

ẋc
+Ai(we−µ i

w)
]
, a velocity controller

τv = KP(ẋc− ẋ)−KIx, a gravity compensator, and damped
environment w = Kd ẋ. The closed-loop system is asymptot-
ically stable at (x, ẋ) = 0 if:

KP � 0 (12)
KI � 0 (13)
µ̄ẋ = 0 (14)

KPAiKd � 0 ∀i = 1,2, · · · ,N (15)

Proof :

First define a Lyapunov function

V =
1
2

xT KIx+
1
2

ẋT Mx(x)ẋ (16)

where x and ẋ are the position and velocity of the robot end-
effector. Mx(x) is the robot inertia matrix in Cartesian space.
Since KI � 0 and Mx(x)� 0, therefore V > 0. Take derivative
of (16) and obtain

V̇ = ẋT KIx+
1
2

ẋT Ṁx(x, ẋ)ẋ+ ẋT Mx(x)ẍ (17)
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Fig. 7. Force Control Block Diagram with GMR Admittance Module.

In Cartesian space, take the robot dynamic equation

Mx(x)ẍ+Cx(x, ẋ)ẋ+Gx(x) = τx (18)

where Cx(x, ẋ) is the Coriolis matrix, Gx(x) is the gravity
term, and τx is the control input. Ṁx(x, ẋ)− 2Cx(x, ẋ) keeps
the property of skew-symmetry as in the joint space, thus

ẋT [Ṁx(x, ẋ)−2Cx(x, ẋ)
]

ẋ = 0 ∀ẋ (19)

Substitute (18) and (19) into (17) to get

V̇ = ẋT KIx+
1
2

ẋT [Ṁx(x, ẋ)−2Cx(x, ẋ)
]

ẋ+ ẋT [τx−Gx(x)]

= ẋT [τx−Gx(x)+KIx] (20)

For the Cartesian space control law,

τx = τv +Gx(x)

= KP[ẋc− ẋ]−KIx+Gx(x)

= KP{
N

∑
i=1

hi(we)
[
µ

i
ẋc +Ai(we−µ

i
w)
]
− ẋ}−KIx+Gx(x)

= KP

[
N

∑
i=1

hi(we)Aiwe + µ̄ẋ− ẋ

]
−KIx+Gx(x) (21)

The desired contact wrench wd is zero, therefore we =
wd−Kd ẋ =−Kd ẋ. Also from the stability condition, µ̄ẋ = 0.
Substitute the relation into (21) to obtain

τx =−KP

[
N

∑
i=1

hi(we)AiKd + I

]
ẋ−KIx+Gx(x) (22)

Substituting (22) into (20), we obtain

V̇ =−ẋT

[
N

∑
i=1

hi(we)KPAiKd +KP

]
ẋ (23)

Since KP � 0, KPAiKd � 0 and hi(we) ∈ [0,1], the super-
position [∑N

i=1 hi(we)KPAiKd + KP] should also be positive
semi-definite. Therefore V̇ ≤ 0, and the closed-loop system is
Lyapunov stable at (x, ẋ) = 0. By further applying LaSalle’s
Invariance Principle on this autonomous system, it is found
that the largest invariant set contains the only equilibrium
point (x, ẋ) = 0. Finally, we can conclude that the closed-
loop system is asymptotically stable at (x, ẋ) = 0.

Fig. 8. Peg-Hole-Insertion Testbed.

Note that the above is a sufficient condition for closed-loop
stability, and the assumptions in the theorem is conservative.
It requires the environment to contain only damping terms.
But in many cases, the environment also contains stiffness
terms. Besides, the positive semi-definite condition in (15)
is not easy to achieve. However, if we have the value of Kd ,
then we can choose KP = KT

d to satisfy (15), which can be
proved by Cholesky decomposition.

IV. EXPERIMENTS AND RESULTS

To demonstrate the performance of the proposed learning
method, a series of experiments are performed on industrial
robot FANUC LR Mate 200iD/7L. The experimental video
can be found in [19].

The testbed is shown in Fig. 8. The peg and hole are both
machined from Aluminium 6061-T6, with a peg diameter of
0.999in (25.370mm), a hole diameter of 1.000in (25.400mm)
and 1.0mm chamfers. The assembly tolerance is industrial
standard H7h7.

To collect the human demonstration data, the HDD device
(see Fig. 9) is designed. The ATI-Mini45 F/T sensor [20] is
embedded between peg and handle bar to collect the wrench
information that human perceives during demonstration. The
PhaseSpace motion capture system [21] with five active
makers on HDD records the corrective velocity that human
applies on the peg.
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In the human demonstration phase, human demonstrates
peg-hole-insertion 50 times from random initial poses. The
wrench w and corrective velocity ẋc are recorded with
sampling frequency 1kHz and 960Hz respectively. The two
data sets with different frequencies are then synchronized by
linear interpolation and smoothed by a moving average filter.

In peg-hole-insertion task, the rotational velocity around
peg axis is usually fixed to be zero (ωz = 0), and translational
velocity along peg axis is defined manually as task require-
ment. Here, vz = max{0,0.01(1−Fz/20)}. So insertion is
at a 0.01m/s feeding speed along the peg axis if there is
no resistance force Fz, and slows down linearly when Fz
increases. If Fz ≥ 20N, the robot will stop feeding. The
velocity command for other four dimensional [vx,vy,ωx,ωy]
is calculated by the GMR admittance block.

For the admittance block training, fifteen Gaussian com-
ponents (N = 15) are used in the GMR model. The Gaussian
parameters are initialized by K-means clustering and itera-
tively optimized by E-M algorithm. Fig. 10 shows the GMR’s
performance on test data. For the same wrench input, the red
dashed line is the corrective velocity applied by human, and
the blue solid line is the GMR output. The average estimation
error is 0.213mm/s, with standard variation of 2.2mm/s.

It is the misalignment between the peg and hole that makes

Fig. 11. Process of Robot Autonomous Insertion with Initial Orientation
Misalignment.

TABLE I
EXPERIMENTAL RESULT OF ROBOT AUTONOMOUS INSERTION UNDER

FOUR DIFFERENT CONDITIONS.

Success Rates Avg. Cycle Avg. Contact Avg. Contact
(%) Time (s) Force (N) Torque (N.m)

(a) 100.0 2.2 1.87 0.023
(b) 100.0 2.3 2.03 0.025
(c) 96.0 2.8 1.91 0.032
(d) 96.0 2.8 2.21 0.030

the insertion task difficult. Therefore in experiment, we intro-
duce an initial misalignment on purpose to test the proposed
learning method. The robot performs autonomous insertions
in the following four groups with different misalignment
conditions.
(a) Small position misalignment (±1mm), and small orien-

tation misalignment (±1◦).
(b) Large position misalignment (±2mm), and small orien-

tation misalignment (±1◦).
(c) Small position misalignment (±1mm), and large orien-

tation misalignment (±3◦).
(d) Large position misalignment (±2mm), and large orien-

tation misalignment (±3◦).
There are 25 trails in each group and the insertion depth

is 20mm in each trial. The process of the robot autonomous
insertion is illustrated in Fig. 11. This trial of insertion
starts with a large orientation error. The robot succeeds to
correct the orientation by the trained state-varying admittance
block. Table I shows the experimental results under the four
specified conditions. The success rates are all over 96%,
which indicates the robot force control could generate proper
commands to adjust the peg’s pose during insertion. The best
performance is achieved (100% success rate) when there
is small orientation misalignment. The success rate drops
to 96% for large orientation misalignment. This indicates
that the proposed learning method is relatively non-sensitive
to position misalignment, but more sensitive to orientation
misalignment.

Fig. 12 and Fig. 13 show the force and torque plots during
one trial of insertion. Contacting happens at 0.25s, and large
force and torque occur during contact with peak force 5.71N
and peak torque 0.085Nm. The force controller then takes
action and regulates both force and torque towards zero. The
residual force error is less than 0.41N and residual torque is
less than 0.006Nm. Total insertion time is 2.43s.

To conclude, the proposed LfD method is suitable for
non-backdrivable industrial robots and performs well on
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Fig. 12. Force Plot During One Trial of Peg-Hole-Insertion.
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Fig. 13. Torque Plot During One Trial of Peg-Hole-Insertion.

peg-hole-insertion tasks with industrial tolerance standard
(H7h7). Traditional force control methods, if well tuned, can
also regulate the contact wrench very well and achieve high
success rate. However, the major advantage of our method
is to eliminate the gain tuning process on the robot. The
admittance gains in the force controller are directly learned
from human demonstration data. The demonstration process
is safe, efficient and intuitive. Moreover, since there is no
tuning process, this method does not require high skills or
expertise on the robot operator.

V. CONCLUSIONS

In this paper, a framework of teaching industrial robots
peg-hole-insertion by human demonstration is introduced.
Instead of manually tuning the admittance gain in force con-
troller, this paper introduced Gaussian Mixture Regression
(GMR) to learn the state-varying admittance directly from
human demonstration data. A human demonstration device
(HDD) is designed to collect the wrench and corrective
velocity information during demonstration. The efficiency,
physical interpretation and stability conditions of the GMR
admittance module are analysed. A series of experiments
performed on a FANUC industrial robot and a H7h7 tol-
erance testbed demonstrate the effectiveness of the proposed
learning framework. The success rate is better than 96%

with ±2mm initial position misalignment and ±3◦ initial
orientation misalignment.
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